Thursday 17/5/2018
Time:90 minutes
(1) A conducting spherical shell of radius R and zero thickness is held at a potential $V=V_{0} \cos ^{2} \theta$. Determine the potential produced by the sphere everywhere. (25pts)
(2) A thick spherical shell of inner radius a and outer radius b made of a dielectric material with a frozen-in polarization $\vec{P}(\vec{r})=k \frac{\hat{r}}{r}$. Determine:
(a)The surface and volume bound-charge densities (10pts).
(b) The total bound charge (5 pts).
(c) Displacement vector everywhere (5 pts).
(d)Electric field everywhere (5 pts).
(3) Charge density $\sigma=\sigma_{0} \sin \phi$ is glued over the surface of an infinite cylinder of radius R. Find the potential inside and outside the cylinder (25pts)
(4) Calculate the electric dipole moment of a circular ring of radius R with linear charge density $\lambda(\phi)=\lambda_{0} \cos \phi$. (15 pts)

