Instructions on how to use the software Excel 2003 for analyzing data for experiment 7 'Measuring g at Birzeit'.

1) Start an excel sheet.
2) Enter the data points (one column for L and one column for T^{2}). See the illustrative screenshots below.

3) To calculate the best slope and the error in it, the best y-intercept and the error in it: Highlight any empty 4 cells where you like the output to be written, click on $f x$ (Insert Function): a small window will appear. Chose LINEST and click ok.
S Microsoft Excel

4) Fill in the range for the Y and X values: (Remember, $Y \equiv T^{\wedge} 2$ and $x \equiv L$.).

Leave the 'Const' empty. Type 1 in 'Stat'.

5) Press the key F2 on the keyboard. Then press the keys

CTRL+SHIFT+ENTER. Now the slope, the error in it, the y-intercept and the error in it are returned as output in the four cells.

区1 exp7_data_sheet.xls											
	A	B	C	D	E	F	G	H	1	J	-
1	L(cm)	T^2($\sec ^{\wedge} 2$)									
2	34.2	1.175		0.04027	-0.10162						
3	50	1.954		0.000875	0.077936						
4	65.5	2.569									
5	82	3.272									
6	99.7	3.901									
7	115	4.584									
8	133	5.166									
9											

6) From the example above, we read: Slope $=0.04027 \pm 0.000875$

Y-intercept $=-0.10162 \pm 0.077936$
Slope $=0.04027=4 \pi^{2} / \mathrm{g}=>\mathrm{g}=4 \pi^{2} / 0.0403=980.34 \mathrm{~cm} / \mathrm{s}$
$\Delta \mathrm{g}=(0.000875 / 0.04027) *(980.34)=21.3 \mathrm{~cm} / \mathrm{s}$
So: $\mathrm{g}=980 \pm 20 \mathrm{~cm} / \mathrm{s}$
7) To draw the best straight line: Highlight both columns, then click on 'Chart Wizard' from the menu.

8) A small window will appear: chose $X Y$ (scatter). Click 'Next', a scattered plot of the data point will appear.

9) Click "Next". The plot will appear and here you can label the axes:

Chart title: Exp. 7 (g at BZU)
Value(x) axis, L(cm)
Value (y) axis $\mathrm{T}^{\wedge} 2\left(\sec ^{\wedge} 2\right)$

10) Click "Next". You will be asked where to place the chart

11) Click 'Finish' to place the chart on sheet 1 , which will look like this:

12) To draw the best straight line: put the mouse cursor on one of the data points and click the right button of the mouse: choose 'Add Trendline'

13) A new small window will appear: Choose 'Linear' and click 'ok'.

14) A straight line will appear to connect the data points. Your chart will look like this:

\$ Microsoft Excel

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

15) To find the equation of this best straight line: (i.e. to find the best slope and best y-intercept): Put the mouse cursor on the straight line, then click the right button of the mouse. Chose 'Format Trendline'. A small window will appear, click 'Option'. Then, tick 'display equation on chart'.

16) The equation of the straight line will appear on the chart as follows:

So, for our illustrative example: $\mathrm{Y}=0.0403 \mathrm{x}-0.1016$
Remember: $\mathrm{Y} \equiv \mathrm{T}^{\wedge} 2$ and $\mathrm{x} \equiv \mathrm{L}$.
Slope $=0.0403=4 \pi^{2} / \mathrm{g}=>\mathrm{g}=4 \pi^{2} / 0.0403=979.6 \mathrm{~cm} / \mathrm{s}$

