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We consider the electric field produced by a charged ring and develop analytical expressions for the
electric field based on intuition developed from numerical experiments. Our solution involves the
approximation of elliptic integrals. Problems are suggested for an arbitrarily charged ring. © 2006
American Association of Physics Teachers.
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I. INTRODUCTION

The use of numerical methods in physics courses is al-
ready a mature practice. This use is true in particular in elec-
tricity and magnetism, where standard textbooks have incor-
porated new chapters,1 sections,2–4 examples,5 and
problems.6 Many articles have introduced instructional ma-
terial using numerical methods.7–16

We consider the problem of finding the electrostatic poten-
tial in all space produced by a charged ring. In most analyti-
cal approaches to this problem, the solution is found only
along the symmetry axis of the ring, where the integrals can
be expressed in terms of elementary functions. The off-axis
problem is avoided because it involves special functions that
are unfamiliar to most undergraduates. We surmount this dif-
ficulty by plotting the relevant numerical integrals and
through trial and error develop intuition about the expected
form of the solution. The expected form is used to construct
a hypothesis about the form of the solution. We test this
hypothesis and propose simple, useful formulas for the elec-
trostatic field.

II. FIELD PRODUCED BY A UNIFORMLY
CHARGED RING

Figure 1 shows the system of interest. A charged ring of
radius a rests in the xy plane with its center at point 0. A
generic source point r� is parametrized by the angle � that it

makes with î, a unit vector:

r� = a cos �î + a sin � ĵ . �1�

The observation point r= �x ,y ,z� is located anywhere in
space. Due to axial symmetry, we do not lose generality by
calculating the field at r= �x ,0 ,z�. We write the distance to

the origin as r=a� and let � be the angle between r and k̂:

r = a� sin �î + a� cos �k̂ . �2�

We let Q be the total charge in the ring and write the electric

field as
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The integral in the ĵ direction vanishes as expected because a
test charge at r does not sense a torque along the symmetry
axis. The other integrals are functions of � only through
cos �. Because cos � is an even function with respect to �
=�, we can make the substitution �0

2�→2�0
�. The compo-

nents of the electric field are
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�1 + �2�3/2 f2���	 ,

�4a�
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�1 + �2�3/2 f1���	 , �4b�

where we have introduced

� =
2�

1 + �2 sin � , �5�

f1��� = �
0

� d�

�1 − � cos ��3/2 , �6�

f2��� = �
0

� cos � d�

�1 − � cos ��3/2 . �7�

At this stage, the expressions have been reduced as much
as possible. Further advance requires evaluating the elliptical
integrals in Eqs. �6� and �7�. Students’ unfamiliarity with
these functions justifies a numerical approach. The goal of
this approach is not to achieve high accuracy, but to obtain
an approximation that will bring insight into the behavior of
the electric field.

The first step is to plot f1��� and f2���. To this end, we
use MATHEMATICA because our school has a site license. Fig-
ure 2 shows the first three statements of the program. The
function f1��� is plotted by creating a list of pairs 
� , f1����.
Note that the physical restrictions 0���� and ��0 bound
� to the interval �0, 1�. From the plot in Fig. 3 we see that
the function looks smooth for �	1 and appears to diverge at

�=1. This behavior is reasonable because we expect the
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magnitude of the field to be finite at all points in space with
the exception of points on the ring that are at �=1 and �
=� /2, corresponding to �=1.

We next study numerically the nature of the divergence.
Given that the field of a line charge diverges as the inverse
distance and as the inverse distance squared for a point
charge, we guess the divergence to be a power law. Thus, we
numerically construct the quantity �1−��
f1��� for various

. Figure 3 shows plots for 
=0.9, 1.1, and 1.0. We see that
for 
=0.9, the divergence is still present. For 
=1.1,
�1−��
f1��� goes to zero, indicating that 
 is smaller than
1.1. On the other hand, for 
=1.0, �1−��
f1��� remains
finite for all values of �. Therefore, this evidence suggests
that f1��� diverges as 1/ �1−��.

We now turn to the integral itself. Although we cannot
write the integral f1��� in terms of elementary functions in
general, we can do so for ��1. We notice that when ��1,
most of the contribution to the integral comes from the
neighborhood of �=0. Figure 4 shows the code in which we
define the integrand g����. We plot g���� vs � in the interval
�0,� /4� for 0.95���0.99. We see that as �→1, the inte-
gral is dominated by values of � in �0,0.3 rad�. This domi-

Fig. 1. The charged ring produces an electric field at the point r.
Fig. 2. The definition, evaluation, and plot of f1���.
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nance suggests using 1−�2 /2 instead of cos �, which is ac-
curate within 0.12% in the interval �0,0.4 rad�. Thus we
consider,

lim
�→1

f1��� = �
0

� d�

1 − ��1 −
�2

2
��3/2 , �8�

which equals

�2�

�1 − ���2 + ��2 − 2��
.

Because this expression holds only for �→1, we have

lim
�→1

f1��� =
�2

1 − �
, �9�

thus confirming our hypothesis. Note that the coefficient �2
is in agreement with the graphical behavior of �1−��f1���
�1.4 in Fig. 3 for ��1.

The 1/ �1−�� dependence in Eq. �9� is due to the fact that
close to the ring, the electric field of the ring is indistinguish-
able from that of a line of charge. For a line of charge, it is
well known that the field behaves as a / �a−r�=1/ �1−��
�1/ �1−�� when r�a and ��� /2, thus justifying the di-
vergent behavior here.

We now obtain the behavior of f2���. For ��1, f2���
should also diverge as �2/ �1−�� because the factor −�2 /2
for the expansion of cos � in the numerator does not contrib-
ute appreciably to the integral for ��0. We check this state-
ment numerically by plotting ��1−�� /�2�f2��� in Fig. 5,
where we see that this combination remains finite for all
values of �.

In our search for simple expressions we refer to Figs. 3
and 5 where we notice that the functions ��1−�� /�2�f1���
and ��1−�� /�2�f2��� behave linearly with �. On this basis,
we fit them to linear functions. If high accuracy were re-
quired, we could use more general polynomials, but that is
not our purpose here. We perform the approximations by
considering the values of the functions at the end points,
namely,

f1�0� = �,
1 − �

�2
f1��� → 1 for � → 1,

�10�

f2�0� = 0,
1 − �

�2
f2��� → 1 for � → 1.

Thus,

�1 − ��f1��� � � − �� − �2�� , �11a�

�1 − ��f2��� � �2� . �11b�

If we use Eq. �11� in Eqs. �4�–�7�, we arrive at explicit ex-

pressions for the electric field,
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Fig. 3. Plots of �1−�� f1��� for various values of 
.
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Fig. 4. Integrand of the function of interest for � close to 1.
�
Fig. 5. Plot of ��1−�� / 2�f2���. The plot shows that the function remains finite for all values of �.
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We check Eq. �12� in the limiting cases �=0 and �→�. In
the first case we should recover the solution for the electric
field along the symmetry axis. In the second case we should
obtain the Coulomb field as the leading term. We set �=0
and �=0 in Eq. �12� and correctly obtain,17

Ex = 0, �13a�

Ez =
1

4��0

Q

�a2� �

�1 + �2�3/2�	 =
Q

4��0

r

�a2 + r2�3/2 .

�13b�

We next let �→� in Eq. �12� and obtain

Ex →
1

4��0

Q

r2 sin��� , �14a�

Ez →
1

4��0

Q

r2 cos��� , �14b�

which are the projections along the axes of the Coulomb
field.

Fig. 6. Electric field in the xz plane.
In Fig. 6 we show a plot of the electric field given by Eq.
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�12�. The magnitude of an arrow has been set to a constant
value to emphasize the local direction of the field. On a
linear scale most arrows would be too small to be displayed
due to the large values of the field near the ring at the point
�a ,0�. Figure 6 clearly shows the divergence at the ring, and
the axial direction close to the axis of symmetry.

What is the importance of having off-axis information?
The electric field lines give the trajectories of charged par-
ticles in that region. This information has been used exten-
sively in the design of devices to confine charged particles
�plasmas� in small volumes18 and in the discrimination of
particles according to mass �mass spectrometers�.19 Electro-
static problems with axial symmetry can be handled by sum-
mation of charged rings. Relevant problems are related to the
calculations of tip-sample forces in atomic force
microscopy.20,21 Particle guns, electrostatic velocity selec-
tors, and electrostatic ion thruster are described in Ref. 22.
Electrostatic lenses are discussed in Ref. 23.

III. GENERALIZATIONS

We next consider a ring with a nonuniform charge density.
This problem can be effectively used as a homework project.

The first difficulty is that, in general, the electric field does
not have cylindrical symmetry. In this case, we need to work
with expressions as in Eq. �3� with a linear charge density
function, ����. Although not all planes through z are equiva-
lent, we will analyze the problem in the xz plane. There is no
loss of generality because the analysis for any plane through
z is the same if the origin of � is properly chosen.

Consider ���� defined in −���	� and expand it around
�=0. As discussed in Sec. II, when ��1 we can assume
�������0� for ��0. Therefore, we expect the divergences
to behave like 1/ �1−�� in this case. We then proceed as
before, multiply the original integrals by 1−�, and then fit
these finite functions to simple polynomials.

Information about the field from a nonuniformly charged
ring has a variety of applications. The quadrupolar charge
distribution on a ring has been used in high precision mea-
surements of properties of elementary particles.24 Gravita-
tional fields, which also satisfy Poisson’s equation,25 are use-
ful for gravitational propulsion. A knowledge of the
gravitational field produced by the rings of Saturn requires
the solution of the electrostatic ring with nonuniform charge.
Another example is precision measurements of the
Aharonov-Bohm effect. And to study the interplay between
the magnetic, electrostatic, and Aharonov-Bohm effects, a
nano-ring with nonuniform potential was constructed.26

IV. DISCUSSION

We solved the electrostatic problem of a charged ring by
finding simple solutions that retain the character of the field’s
behavior. Similar integrals appear for the magnetic field pro-
duced by a current ring. This problem is of particular interest
because it forms the basis for understanding the parameters
of Helmholtz coils. For the same reason as in the electro-
static case, the off-axis solution is usually avoided. With the
expression provided in this paper, further questions can be
asked regarding the homogeneity and strength of the mag-
netic field from the symmetry axis.

The approach used to investigate the nature of the diver-
gence in this paper could be used in a large variety of prob-

lems, even those that have nonpower law divergences. The
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idea is to build student intuition about the nature of the di-
vergence �if it exists� via numerical exploration, which may
include plotting the functions with nonlinear axes.
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